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Abstract—In this paper, we describe the cognitive radios
sharing the spectrum with licensed users and its effects on
operational coexistence with unlicensed users. Due to the
unlicensed spectrum band growing needs and usage by many
IEEE 802.11 protocols, normal wireless radio operation sees
high interference leading to high error rates on operational
environments. We study the licensed bands and the char-
acteristics of the unlicensed bands, as it is know that the
licensed bands have a maximum limit of FCC interference for
a licensed set of frequencies. The cognitive algorithm for this
probabilistic model for the unlicensed users, uses a model
which takes into account the threshold variable ratio %
and also calculates the lower-bound of the combined value
of secondary user interference for overlapping frequencies
with the primary user. By using simulation, we detect the
primary user when the radio frequencies are known a priori
and compare it when the frequencies are unknown and
needs to cognitively detected. In our analysis we exploit
the similarity measure seen at each sub-channel frequencies,
which are due to multiple paths of the same reflected signal
by maximizing the correlated information of the correlation
matrix. For the general case the covariance matrix for blind
source separation, we use ICA de-correlation methods and
show that cognitive radios can efficiently identify users in
complex situations.

Index Terms—Algorithm complexity, SDR and Cognitive
Radios, Power Aware Radios, Wireless Sensor Network,
Covariance Matrix, PCA, ICA.

I. INTRODUCTION

Cognitive radio and cognitive network studied here
are both considered static. There are mobile primary
users model for extensions to study specific signal es-
timation techniques. The cognition in their part has two
common modes of interference avoidance. The first ap-
proach uses overlay to make up for the unused spectrum
bandwidth and the second approach uses underlay in
the form of interference control. The history of cognitive
radio can be attributed to the thesis work of J. Mitola in
2000, where he coined “Cognitive Radio” for a form of
radio that would change its performance by detecting its
environment and changing accordingly. We like to find
the tradeoffs between minimum spectrum power allo-
cation and channel rate, when operating in overlapping
frequencies with primary users.
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We like to study the performance of deploying for
Wireless Sensor Networks which uses the ISM band
using IEEE 802.15.4 protocol in context of Cognitive
networks. There has been a lot of emerging standards
on inter-operability but none of them address the dis-
tributed nature of the spectrum. Some of the deploy-
ments have adapted to frequency reuse and orthogo-
nal spectrum allocations to have least interference and
better usage of the same spectrum. These implemen-
tations allow baseline reality and also taking into con-
sideration of the non-linearity of the radios in practice
which introduce errors during channel coding. We model
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Fig. 1. Unlicensed user partially overlapping with primary user.

interference as unlicensed users partially overlapping
with primary user as shown in Figure 2, which gives
raise to co-channel interference. The varying parameters
at the radio receivers are interference due number of
overlapping channels and variation caused by mobility.
The interference in mobility can be seen as the phase
shift due to doppler and phase shift leading to delay
spread due frequency. The two dimensional represen-
tation of interference varying with wireless range from
the primary signal and the interfering signals is repre-
sented using covariance matrix. As we are interested in

IEEE
computer
® psouety



correlated channels with high signal to noise ratio (SNR),
which leads to higher link quality and interference free
reception during spectrum usage.

Rest of the paper is organized into: Section II describes
related work in these emerging standards. In Section III,
we outline architecture of the Cognitive Model using
Interference avoidance (spectrum-overlay). In Section
IV, interference versus energy model is described for
a given bandwidth and channel capacity. In Section
V, the Rayleigh fading model is described in terms of
mobility patters and how it can be represented as a two-
dimensional covariance matrix. Concluding section on
simulated results describes the upper and lower-bound
thresholds for maximizing covariance and ICA [8] for
selecting coexisting channels for large Wireless Sensor
Network.

II. RELATED STANDARDS

Due to the availability of Software Defined Radios
and its ability to architect sophisticated spectrum sensing
radios, the FCC in 2004 formed a working group to de-
fine 802.22 standards. The new standard was particularly
to rural areas by sharing the television spectrum, the
standard is expected to be completed by the first quarter
of 2010 and with this some of the first networks could
be deployed.

There are a number of elements that were set down
for the basis of the 802.22 standard. These include items
such as the system topology, system capacity and the
projected coverage for the system. By setting these basic
system parameters in place, the other areas fall into
place. The parameters which effect such channel ca-
pacity, SNR, energy efficiency, BER and optimum radio
modulation schemes for a given interference level to
exist with other radios is described in Theorem 1 through
Theorem 7.

III. MODEL PREDICTION
A. Interference avoidance (spectrum overlay)

Using the specification of 802.22, which relies on a
central command controller, it would allow the base
station to have large training samples collected from
all the CPE’s. The data-set can be used over time to
predict the spectrum availability for cooperative future
scheduling. The spectrum can be categorized into highly,
medium and sparsely used. We expect the coverage in
urban areas, where the network may be deployed would
fall into the sparse spectrum category. The CPE’s which
are deployed remotely will collect the frequency of the
detected signal and its time duration in its overlapping
spectrum. The spectrum availability can be calculated
with the overlapping intervals. Current radio design
uses packed based count [2] and time-sampling [2] tech-
niques. In the packed capture technique, the cognitive
module becomes quite complex due to large number of
packets and its demanding space requirements. In the
other implementation Systematic Timer based Sampling
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(STT), all the channels are sampled at an interval of 1 sec-
ond and provides an accurate measure of the spectrum
activity to be recorded. The above techniques takes into
account the capture of packets over the entire networks
and uses cognitive network techniques.

In this paper, we discuss how to represent data-sets in
two-dimensions which captures the interference model
and the path-loss model for cognitive radio co-existence.
These dynamic channel losses are used to de-correlate
the signals of the primary and secondary users.

B. IT Model (spectrum underlay)

The concept of interference temperature [1] is identical
to that of noise temperature. It is a measure of the power
and bandwidth occupied by interference. Interference
temperature 77 is specified in Kevin and is defined as

P I ( f cy B )
B 1)
where P;(f.,B) is the average interference power in
Watts centered at f., covering bandwidth B measured

in Hertz. Boltzmann’s [1] constant k is 1 : 38 x 10723,

Ti(fe, B)

C. Ideal Model-Known Frequencies

In the ideal interference temperature model we at-
tempt to compute only the interference due to licensed
signals. Assume our unlicensed transmitter is operating
with average power P, and frequency f,, with band-
width B. Assuming that the radio knows the frequen-
cies of the base station and the allowed bandwidth,
then it needs to only filter frequencies in the range
fe — B/2 + f. + B/2 overlaps n licensed signals, with
respective frequencies and bandwidth of f; and B;.

As shown in Figure 1, we need to guarantee that

M; P

IB, @
Note the introduction of constants M;. This is a frac-
tional value between 0 and 10 as shown in Table 1V,
representing a multiplicative attenuation due to fading
and path loss between the unlicensed transmitter and
the licensed receiver. Section II described the 802.11
standard, which allows to define the licensed user. The
model co-existing needs only to know which are the
overlapping frequencies other than the given standard
specification of frequency and bandwidth. The second
step is to measure 77 in the presence of the licensed
signal. Assuming we know the signal characteristics and
the wireless losses we can use correlation of the mea-
sured interference, which will help isolate the redundant
signal interference. Also, if we have precise knowledge
of the signal’s bandwidth B and center frequency f., we
can approximate the interference temperature

Ti(fe, B) = Plfe=B/2- T)QZBP(fC +B/2+7T) 3)

where P(f) is the sensed signal power at frequency f
and 7 is a safety margin of a few kHz.

T1(fi, Bi) + <Trfi,1<i<n




D. Generalized Model-Unknown Frequencies

In cases where there is no prior knowledge, which
could be a new network environment then, we need
to apply interference temperature model to the entire
frequency range of operation to detect any primary user.
This is typically the case with blind source separation.

MP

TI(fC7B)+ﬁ <Trfe 4)

Assuming each licensed signal has power P; and other-
wise the interference floor is defined by the thermal noise
temperature T, we can transform (4) into the following:

KBT,(f.(B—B;)+kBINS!_ B <" | B;P¥1<i<n

)

In a simple case with only one licensed receiver, the
inequality simplifies to

K BTy, By

P —kBTNy — B—DB;

Latter in the analysis we show how to measure and de-
correlate in such complex environments.

(6)

IV. MODELING MOBILITY IN WIRELESS CHANNELS

Rayleigh fading is used to describe the characteristic
of the wireless channels, which are used by wireless
receivers. The Rayleigh model assumes that signal has
passed through such a medium and will vary randomly
or fade according to Rayleigh model. The Doppler power
spectral density of a fading channel describes how much
spectral broadening it causes. The effect on pure signal,
when it passes through such a channel.

1
2
mfa\/1— ( )

Where v is the frequency shift relative to the carrier
frequency. The equation is valid only for values of v
between =+ f,;. The Doppler model as shown in equation
(15) and the Rayleigh model described here and in
equation (24), we can extend it to simulate mobility by
summing up the sinusoidal. The calculation of the co-
efficient of the real and imaginary parts used by the
Rayleigh model can be redefined for a scatter, which is
uniformly distributed around a circle at angles «,, with
k rays emerging from each scatter.

In this model we use multiple radio receivers
Ry, Rq1, Rea... Rsm. The normalized autocorrelation func-
tion of a Rayleigh faded channel with motion at a
constant velocity is a zeroth-order Bessel function of the
first kind:

S, ()

r

fa

Rr = Jo(2n far) (8)
A. Level Crossing Rate

The level crossing rate is a measure of the rapidity
of the fading. It quantifies how often the fading crosses
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some threshold, usually in the positive-going direction.
For Rayleigh fading, the level crossing rate is:

LOR = 2nfapexp ©)

where f; is the maximum Doppler shift and p is the
threshold level normalized to the root mean square
(RMS) signal level:

o Rthresh
Rys

Let us design a way to detect and isolate the primary
user R, and a secondary users Rs1, Rs2...Rsp, for chan-
nels chq,chg, chs...chss. For single mobile receivers the
interference noise due to path-loss has a single spike,
but for multiple users the interference noise due to path-
loss degrades into a Gaussian curve [5]. From equation
(2), we calculate a values M; for the interference seen at
multiple channels in time.

(

To maximize the correlation we need to optimally select
the diagonal elements of the matrix shown in equation
(11) and values in Table IV, such that the equation
below (12) can be used to select channels which can
differentiate primary user from the secondary user’s
interference.

(10)

P11
P21

P12
P22

M.on (1)

G = max det(M) = P11 = P22 = 1 (12)
V. SIMULATION
TABLE 1T
COGNITIVE CHANNEL INTERFERENCE SIMULATION SETUP

Methods Model Metric
Mobility Traces OMNET++ Doppler
Propagation Rayleigh-Jake’s ~ Phase, freq
Radios 1 Primary user 77 Cognitive
Channel 48 Sub-channels M;
Noise 1 Secondary user  Floor-noise
Covariance R-System Peov
ICA R-System Puncov

IT model described in equation (2), we calculate dif-
ferent values for the variable terms 7y (f;, B;) and I‘Iféf .
A OMNET mobility framework simulator, uses inter-
ference modeling as derived in Section IV and Table
II. We use two models to analyze the data collected
from the mobility simulator, one uses the covariance
technique [4,6] to optimize as shown in equation (12),
when there is not too much of co-channel interference
and the seconds methods uses ICA, which de-correlates
under the presence of heavy co-channel interference.

A. Two Dimensional Representation of Interference using
Covariance

The Figure 2 shows different values of M; seen at
the primary receiver with no secondary users, as it can
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TABLE 1
VALUES OF THE DIAGONAL ELEMENTS FROM TABLE IV. (VALUES COMPARED WITH ICA-METHOD)

Values of p; ; from Table IV Measured M py; | Measured My, | Ideal Upper-Bound | Ideal Lower-Bound | General Upper Bound | General Lower Bound
Peor=1.313362745 3.792 0.08 0.46 0.32 1.41028417 | 1.22920039
Peor=1.3747417 4.362 0.022 1.821411 0.345488 2.0216711 | -1.22920039
Peor=2.07415429 4.222 0.034 2.235424 0.415796 2.0216711 0.8926338
Peor=2.086886414 3.917 0.063 2.229352 0.530349 2.3109796 0.21394222
Peor=2.420906219 4.073 0.047 2.420906 0.09 2.7578501 | -0.74375612
Puncor=0.816974583 4.362 0.013 1.399701 0.320941 1.30032658 | 0.03084368

be seen that it has unique peaks, which vary in time.
The measured co-efficient are shown in columns of Table
IV and the corresponding covariances are calculated in
calculated columns of the current table. Initially, when
only the primary user is using the spectrum and has
mobility with constant fading and changing wireless
range, the signals seen at the receiver has a sharp spike
which is shown in Figure 2. The corresponding Figure 3
shows the effects of interference at the primary receiver,
the plot does not have any spatial or time varying
properties, as it is uniformly distributed, which follows a
Gaussian distribution. To separate the interference from
the secondary users, we need to compute the lower
and upper bounds of the interference floor, which is
computed by the thermal noise temperature Ty . The co-
efficient of the covariance matrix of all the 5 data-sets
are chosen to maximize G as shown in Table IV. As we
to use the correlation between signals, which are due to
multi-path scattering, we plot the upper bound response
of the attenuation of the channels, this is shown in Figure
4, which are seen completely correlated and described in
equation (3).

B. Estimation of Interference using ICA

The above method uses correlation matrix to maximize
the determinant to find the primary user and secondary
users. ICA uses a method which seeks components,
which are varying independently and thus differentiates
the primary user and the rest. This methods is pre-
ferred when the noise level is very high in the chan-
nels. The measured coefficients for ICA analysis using
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R-System package fastICA [3], are tabulated in Table
IV(ICA,,ICA,, where users=2), puncorr = 1.30032658
for number of signal equal to two, which is approx-
imately lower bound of the last result set pcorr =
1.313362745. Figure 5 shows how ICA can perform well
when the sources are unknown and blind or shadowed
to measurements, when the noise level is above the given
interference threshold, as shown in equation (6).

VI. CONCLUSIONS

In the power-aware signal analysis we compare the
ideal spectrum model with the generalized spectrum
model to obtain obtain upper and lower bounds of the
thermal interference for the variable frequency range of
primary user. We improvise by calculating the floor noise
due to co-channel interference and detecting the primary
user with least power as in the case of 802.22 standard.
To find the performance of our method, when the pri-
mary user frequencies are unknown which is the case in
wireless sensor networks, we compute ICA for the entire
spectrum and show that the primary user detection is
possible when coexisting with secondary users or when
noise dominates the desired feature thresholds.
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VIII. INTERFERENCE VS ENERGY MODEL

Theorem 1 o Co-channel Interference

D n
SIR = 10log,, [<E) Kﬂ}

Gaussian Model
> —1

o Adjacent Channel Interference
cos(2ILft + 0) = Doppler Spectrum Model

(13)

Prx ], G(H)df
(d)"

SIR = CP X ( (14)

Transmitter sensitive
o Multi-path fading

(15)

The effects of fading 6 can be combated by using diversity
to transmit the signal over multiple channels that experi-
ence independent fading and coherently combining them
at the receiver. The probability of experiencing a fade in
this composite channel is then proportional to the prob-
ability that all the component channels simultaneously
experience a fade, a much more unlikely event.

As the IT model described in equation (2), we calculate
different values for the variable terms Tj(f;, B;) and
JZIBP The reliability of a digital system is measured in
terms of the error rate in the transmission link. BER - Bit
Error Rate, SER - Symbol Error Rate, FER - Frame Error
Rate, PER - Packet Error Rate. The SER characterizes
the performance of the modulator. The BER is measured
at the bit-level in terms of the number of bits that are

received erroneously.

A. Channel Capacity

Theorem 2 Shannon showed that in an AWGN channel, the
maximum bit-rate C' that can be achieved with arbitrarily
low error rate over a given transmission bandwidth WT is
bounded by the expression below:

1

logy M (16)

= 17

B=Y 10g2 = (17)

where p; is the probability for the occurrence of the it" symbol
with energy. _
_ mazkEy

~ logy M (18)

Theorem 3 Where E, is expressed in terms of the peak
symbol energy in the signal constellation. EY. where v = E,,
and 5 = E

C P C
— <1 1+ —+— ) =1 14+5— 1
Wy = 0g2< + NoWT) ng( JF’YWT) (19)

Symbol Energy:
E

L,
log,

— 0)

498

where P/N,W, is the SNR, C/Wr is the maximum achiev-
able bandwidth efficiency in bps/Hz, and ~y is the average
E,/N, defined by equation (2).

B. Error Rate Bounds.

Theorem 4 SER on the otherhand is measured at the symbol
level in terms of the number of symbols that are in error. A
symbol error is made when the received signal falls outside
of its decision region. A symbol error leads to a bit errors as
the symbol is erroneously mapped to an incorrect bit-pattern.
Let n be the number of bits per symbol. Then, SER may be
bounded in terms of BER as shown below:

P, < P, <n.P; (21)
To express PER in terms of BER
Lyp
Py=1-(1-p") 22)

C. A basic measure using BER

Theorem 5 SER, FER, and PER all depend on BER, a basic
measure for digital system is based on BER which can be
expressed in terms of £t N, where Ey is the energy per bit and
N, is the equivalent noise spectral density over the signal
bandwidth. The variations of BER with £+ depends on the
channel and the type of the demodulator. Channel Models:(see
Table 111 for BPSK-modulation)

« AWGN
2F
P=Q ( N:) (23)
o Rayleigh Fading
p=t(i VEMN ) (24)
2 1+ Ey/N, | = 4E,/N,

D. Design goals for using BER

Theorem 6 Additive white Gaussian noise (AWGN) in gen-
eral, in an channel, BER is exponentially related to Ey,/N,,
while in a fading channel, BER is inversely relzzted to Ep/N,.

For a given BER, a digital system with lower £ N requires
lower transmission power, which can improve battery lifetime
of the communication device and the system capacity.

E. Energy Efficiency

Theorem 7 Energy efficiency can be more accurately defined,
when taking into account both energy and bandwidth, we
define f(x) of a system to be the amount of Ey/N, required
for a given bandwidth efficiency:
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